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A numerical method based on Fourier expansions and finite differences is presented. The 
method is demonstrated by solving a scalar, three-dimensional elliptic equation arising in 
MFE research, but has applicability to a wider class of problems. The scheme solves 
equations whose solutions are expected to be periodic in one or more of the Independent 
variables. Cm 1984 Academic Press, Inc. 

1. INTRODUCTION 

Numerical solutions to elliptic problems have usually been obtained with finite 
difference methods. Finite elements have also enjoyed great success in geometries 
significantly differing from rectangles or boxes. Methods based on expansion of the 
unknown function in Fourier series are more complicated. Despite the fact that for 
periodic functions these methods are more “natural,” unfortunately, they have not 
been used as widely. 

In this paper we present a hybrid method for three-dimensional problems based on 
Fourier expansion and finite differences. Although the method has wide applicability, 
it is illustrated on a specific problem arising in magnetic fusion energy (MFE) 
research. 

The elliptic equation of interest is solved in a coordinate system conforming to the 
boundary of the domain which is -an asymmetric torus. The solution is periodic in 
two of the angular variables. The entire equation is Fourier-analyzed. Derivatives 
with respect to the angular variables are expressed exactly using a matrix-vector 
formulation. Differentiation in the third direction is approximated by finite 
differences. After the discretization, the harmonics of the solution are algebraically 
isolated from the harmonics of the coefficients of the equation. The result is a large 
linear system of equations which is solved by standard methods. The advantage of the 

* Work performed under the auspices of the USDOE by the Lawrence Livermore National 
Laboratory under Contract W-7405ENG-48. 

469 
0021.9991/84 $3.00 

Copyrrght ‘a 1984 by Academic Press. Inc. 
All rights or reproduction in an), form reserved. 



470 SHESTAKOV AND MIRIN 

method is in the economical description of the solution in terms of its Fourier har- 
monics. 

The following section discusses some concepts from MFE research which 
motivated this work and introduces the application in physical terms. In Section 3, 
the problem is formulated as a Neumann problem for the scalar potential of a 
magnetic field. The method and the numerical formulation are presented in Section 4. 
After introducing a particular coordinate system, the domain becomes similar to that 
of a periodic cylinder. The coefficients of the equation are Fourier-analyzed and a 
linear system is derived for the harmonics of the potential. A computer program was 
written to solve the problem introduced in Section 2. In Section 5? the results of two 
applications of the method are presented. The cases were chosen to display the wide 
range of problems which the computer program can handle. Extensions, limitations, a 
brief discussion and concluding remarks are given in Section 6. Appendix A contains 
a description of the algorithm used to generate the matrix of harmonics introduced in 
Section 4. Appendix B gives a mathematical proof justifying the modification of the 
matrix in Section 4 which guarantees a unique solution. 

2. MOTIVATION 

Confinement vessels in MFE research usually possess some symmetry. Toroidal 
devices such as tokamaks and reversed field pinches are toroidally symmetric; theta 
pinches have azimuthal symmetry. However, present day mirror experiments and 
stellarators lack this trivial type of symmetry. Interest in stellarators has been revived 
due to the successes of Wendelstein VII-A at Garching [ 1 ]. Although a stellarator is 
toroidal, the plasma column deviates from toroidal symmetry due to the fields 
generated by the helically wound coils on the surface of the confinement vessel. The 
resulting configuration has nested toroidal magnetic surfaces concentric about a 
magnetic axis that possibly has helical perturbations as it traverses the device. The 
entire column exhibits the same behavior; it twists as it travels around the torus. 

A preliminary step in a proposed experiment is the coil design. Currents in these 
coils generate the vacuum magnetic field whose usefulness to plasma confinement is 
then studied. In tokamaks, the coils are of simple structure; hence, the resulting field 
is easily calculated. Stellarators, having more complicated coil designs, have fields 
which are harder to compute. Presently, there is great interest in devices in which the 
helical effects are at least as important as the toroidal ones. 

The HELIAC is a proposed device with nested surfaces and a magnetic axis that 
spirals helically about a circular axis [2]. Such configurations can be constructed by 
means of various currents running along the major axis, along a circular loop, along 
a helically wound coil about the circular loop and superimposing a uniform vertical 
field [3]. Simulations have been performed [2] for a model HELIAC with closed 
circular coils which are anchored to a larger circular conductor supplying the 
poloidal field. The center line of the smaller coils traces out a path that helically 
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winds around the larger circular conductor (Fig. 1). Many variations of the above 
have been proposed: e.g., whether to have the larger coil link the smaller ones, how 
many helical periods, etc. One objection to the above configuration is its complexity. 
It is preferable to have modular coils and to discard the large conductor. The 
numerical method presented here is applied to the problem of finding simpler coil 
configurations for HELIAC. 

Once the vacuum field is known, its properties are studied. One advantage of 
HELIAC vs. tokamak vacuum fields is that they may possess an “average magnetic 
well.” This is an extension of the principle behind confinement with magnetic mirrors 
Since particles will generally circulate on the magnetic surfaces, configurations are 
constructed in which the average field increases outward from the magnetic axis. 
thereby improving confinement. Other aspects studied are the transform and shear of 
each magnetic surface. The transform, a surface quantity, measures the ratio of the 
number of poloidal turns per toroidal transit that each field line makes. Shear is a 
measure of the variation of the transform from one surface to another. Knowledge of 
the transform is useful in order to avoid surfaces of low order rationality, Such 
surfaces, where the transform is nearly a ratio of two small integers, will damage the 
nested topological structure and give rise to large “island” structures 141. Both the 
transform and the well depth are computed by following field lines as they travel 
around the torus. This requires integrating a 3 x 3 system of ordinary dXerentia1 
equations. At each integration step, the field is evaluated. Consequently, the study of 
many configurations requires use of an efficient, accurate algorithm for the 
computation of the field. 

There are several approaches to finding optimum HELIAC configurations. If only 
circular coils are used, the field can be expressed using elliptic integrals. This 
procedure has been optimized by Ehrhardt [5]. For coils of arbitrary shape, the 
traditional approach is to fix the coil positions, shapes and currents through the coils. 

Poloidol Field 
Coil 

Toroidcl 8 L=I 
Field Coils 

FIG. 1. Proposed coil design for HELIAC. (Courtesy of T. K. Chu, PPPL.) 
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then use the Biot-Savart law [6] to compute the field. Mai et al. [7] use this 
technique and show that HELIAC can be constructed using only closed poloidal 
“PACMAN” coils. An alternate approach [8] is to expand the field using a complete 
set of harmonic functions. If the resulting field properties are deemed favorable, the 
magnetic field can be regenerated by a set of currents that coincide with the 
equipotential lines (see [8] and below). 

One can consider a few objections to the above methods. The complexity of using 
only circular coils linked to a larger circular conductor has already been discussed. 
Disregarding the difficulty of constructing coils of non-standard shapes (e.g., 
“PACMAN”), the main objection to the Biot-Savart law approach is that the 
integrations are very slow. The use of the Dommaschk potentials [8] has been 
successfully applied to the design of Wendelstein VII AS. However, this converges 
slowly for small aspect ratios. In addition, for HELIAC one must place a singularity 
of the field at a predetermined position to reproduce the kidney-shaped magnetic 
surfaces [9]. This singularity is the analogue of the central conductor. 

In the alternate approach presented here, we assume the existence of an outer 
asymmetrical toroidal magnetic surface. The magnetic field inside the surface with 
non-zero toroidal flux is then computed by the Fourier method described below. As 
in [S], the field is generated by skin currents flowing on the outer surface. With these 
means, a large parameter space can be quickly scanned to find optimum HELIAC 
configurations. 

3. MATHEMATICAL FORMULATION 

If D is a toroidal domain with boundary iiD, the problem is to compute the 
vacuum field 3 in D. This field satisfies: 

B.n”=OataD (1) 

where n^ is the unit outward normal, and 

J -B.ds#O (2) 

where the integral is over a poloidal cross-section. Since B is a vacuum field, it 
satisfies 

v.B=o, VXB=OinD @a, b) 

Using results of Betancourt [lo] and Dommaschk [8] we will show that 

(a) B= Vv in D, where IJ is the scalar potential. 
(b) B is generated by surface currents on aD. 
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(c) Once 3 is prescribed outside D, the direction of the surface currents are 
obtained from the equipotential lines of v on 8D. 

(d) These equipotential contours encircle the torus either poloidally or 
toroidally. 

Equation (3b) justifies the ansatz for B in (a) above. Equations (3a) and (1) imply 
that v solves a Neumann problem in D. The field, 3, is generated by a current 
distribution, which is approximated by surface currents on %D. Once a conliguration 
is deemed favorable, the surface currents may be discretized into a finite number of 
closed coils. One is free to specify any additional field, geXt, outside the torus; a,,, 
may be given a priori. In the present application, since the search is for a modular 
coil configuration that lies on 8D, gext is set to zero. 

Let A be a disc with boundary C piercing ~30 and let a, b be two points which 
mark the intersection of C with 3D (see Fig. 2). 

c=c,,+c,,, where Cab lies inside D and C,, outside. 

L,, is the intersection of d with r3D. The total current in %D normal to L,, is 

r,,=JA(VX+&=Q Jw=fc Vy/~dl=ly(b)-ly(a), (ii) 
‘C oh 

where we assumed that g vanished outside. If a = a, is fixed and b allowed to vary, 

y(b) = I,, + ~/(a,) = const. (5) 

Thus, equipotential lines of v on dD coincide with surface currents. Another way of 
proving this is to express the skin current (=V X B) in terms of the jump in 2 across 
the surface; recall that B= VW, and then note that the resulting vector lies on the 
equipotential lines on the surface. This proves statement (c) following Eqs. (3). 

The above analysis is unchanged if Eext # 0. In this case. the fields inside and 
outside are respectively expressed as geXt + Vv and B,,, . The boundary condition 
becomes ihy/ih = -gext . n^. The direction of the skin current changes, but it is still 
coincident with the equipotential lines of w. Note that 8D acts as an insulator to the 

C ab 

FIG. 2. Section of boundary 8D showing the disc A which pierces %D. 
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total field. Although the solution to the Neumann problem depends on the choice 
made for Bert, the resulting field inside D remains unchanged. 

The proof that simply connected equipotential lines on 3D cannot exist is by 
contradiction. Let C be such a contour. Consider a small volume 1’s D (see Fig. 3) 
bounded by S = S, U S, U S,, where S, is the subsurface of %D enclosed by C, S, is 
normal to ,3D and is of small width, and S, lies inside D on a magnetic surface (an 
interior surface where B. A = 0). MaxweU’s equations imply 

o= V .gdV=. B.&E 
J s 

B.Z. 
I’ S SA 

The last equality is due to g lying parallel to both?, and S,. A contradiction arises 
by recalling that B= VW and ly is constant on C; B is thus everywhere normal to S,, 
which implies a net flux into V. Due to this contradiction, contours of w must 
encircle the torus either poloidally or toroidally. 

The flux condition, Eq. (2), implies that w is multiple valued in 4, the toroidal 
angle. If the jump in I,U is set to unity, 

the toroidal flux is equal to the magnetic energy. Indeed, consider the simply 
connected domain D* of Fig. 4, with boundary R ,,QO, and aD *. D* is a slight 
alteration of D. An application of Green’s first identity to the function ly gives 

where J2 replaces the two domains a,, Q, both lying in constant 4 planes. The 
multiple valued nature of ly is used in deriving (7). Let D* approach D and invoke 
Eq. (6); then Eq. (7) implies 

magnetic energy = 
I 

B* dV = 
D I 

1 VW/* dV= 1 . F g. z = toroidal flux. 
D J (8) 

D 

FIG. 3. Section of boundary 3D as seen from inside D. S, is a closed simply connected equipotential 
contour of ty on cYD. S, is a section of a neighboring magnetic surface. Dist (S,, S,) = 6 is assumed to 
be small. 
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FIG. 4. The simply connected domain D *. The curve C remains inside D. The boundary of I?:‘: 

consists of BD and the two flat surfaces at $J = 0. 

Equation (6) also implies that g is generated by a poloidal current on 223. In 
Fig. 4, let C be a contour which encircles the major axis, lies inside D, and encloses a 
surface S,. Using Eq. (6), the poloidal current. 

Ip=j ds. (Vx@=l 8.&j Vv.dl 
SC C C 

= ly(.q# + 2n)) - v(f($>> = 1. P> 

The lack of periodicity of I,U is easily removed and leads to the formulation of the 
Neumann problem: 

Let 

ly=x+4/2x (10) 

where 

v2x=o in D (lla) 

aX 
an= 

-!-&$ on ao. ‘lib) 

The potential x is periodic in #. Equations (10) and (1 lb) assure the satisfaction of 
Eq. (1). The Neumann problem for x, Eqs. (1 I ), is mathematically well posed. The 
boundary function in Eq. (1 lb) satisfies the compatibility condition [ 1 I], for using an 
application of Green’s identity, 

The last equality follows since 4 is a harmonic function. The potential x is unique up 
to an additive constant. 
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4. NUMERICAL IMPLEMENTATION 

In this section we discuss the numerical method which solves the Neumann 
problem for x introduced in the last section. 

We begin by describing the coordinate system. These coordinates are not 
orthogonal and not standard. However, with some modifications they are applicable 
to any toroidal geometry. Two of the variables are angular. Their introduction allows 
the expansion of any single valued function in a double Fourier series. The third is a 
scaled radial distance. Its definition implies that the boundary, 3D, is a coordinate 
plane, thus, ensuring a good approximation of the boundary condition given by 
Eq. (1 lb). 

In the second subsection the Fourier expansion method is introduced. A discussion 
of the algebra and calculus of the discretization follows. The section ends by a 
description of the linear system for the harmonics of the solution. Since the solution 
is unique only up to an additive constant the matrix is singular. One of its equations 
is modified to ensure solvability. A mathematical justification of this is given in 
Appendix B. 

A. Derivation of Equations in the Appropriate Coordinate System 

The domain of interest, D, consists of the interior of a torus swept out by a two- 
dimensional cross-section that is helically wound about a circular axis. Specifically, 
consider the contour f(R, 2) = 0 of Fig. 5. D is then the volume enclosed by the 
contour as it is rigidly wound about the circle of radius R, according to the winding 
law, 13@). We now define R, as the major radius, p as the winding radius, 8(#) as the 
winding law (e.g., 19(g) = k& k integer), Q as the toroidal angle, i as the poloidal angle 
and z as the radial variable. In the (z, 4, [) coordinate system (not orthogonal), 3D is 
given by r= g(i) where g is periodic in c. 

Define the scaled radial displacement 

.I- Given by T = g(i) 

FIG. 5. Definition of r, /, 5 coordinates. 



A FOURIER METHOD 477 

then 0 < o < 1 and o = 1 defines the boundary. The coordinate transformation is 

R = R, + p cos 8(p) + a&) cos(6($) C C), 

f#=h (i3) 

2 = p sin e(4) + ug(C) sin(Q) + 0 

with Jacobian J = (ag(LJ2R)- ‘. 
The coordinates of interest are (o, 4, 5). Since HELIAC is allowed mh helical 

periods per toroidal transit, the domain is 

In (0, $, r) coordinates, the equation to solve is 

0 =+~=og([)~R . 

where 

b = oW, C) @($)/R, 

d = og(C)‘/R, 

e = - g(l;)[w(C) + P ~0s Cl e’(#>/R 

f=Ri~ + e’(#)2(Ug(c) + P COS c>“/(Ra), 

(16) 

and R is given by Eq. (13). 
Equation (1 lb) may be derived in the (0, 4, i) coordinates by computing 

VI+U . Vo = 0 or equivalently by deriving VW . VY = 0 where Y 1 r - g(5) is a 
function constant on 8D. The boundary condition becomes 

(13) 
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where 
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In Eqs. (15~( 18) both x, the unknown, and a, b ,..., a,, b, , c, , the coefficients, are 
periodic in 4 with period 27r/m, and periodic in < with period 27r. The coefficients 
depend on input quantities such as g(C) and B(4). 

Equation (15) is homogeneous, while the r.h.s. of (17) depends on 8’(g). It is worth 
noting that an axisymmetric torus of arbitrary cross-section has S’(4) = 0, giving a 
homogeneous boundary condition. This implies that the only solution is given by 
w = 4/27c + const., i.e., 3.~ 04 = (l/R)& a purely toroidal field equivalent to the one 
induced by a uniform current along the Z-axis. 

The solution x is unique up to an additive constant. Since x is single valued and 
periodic in both [ and $, at o = 0 it is independent of [; i.e., 

The potential x is made unique by specifying its mean value at (T = 0, 

Xav = 0. (20) 

At (T = 0, the Jacobian of the coordinate system is singular; the poloidal variable 5 
loses its meaning. However, the Laplacian operator is still valid and the solution is 
regular there. We derive another relationship for x by integrating the partial 
differential equation over a small disc centered at o = 0. Recalling Eq. (15), 

O=L@)=I+II+IIIwhere 
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Choose 6 > 0 and integrate 

o= ddu Jo JZZ dl I&) = jj (I + II 3 III). 

The third integral in Eq. (22) vanishes by periodicity, i.e., 

jjIII=(&7j~~~-&( )=O. 

For 11, the order of integration is interchanged and 
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(22) 

(23) 

However, ax/au and ax/@5 are bounded at cr = 0 and a, b - 0’. A simple analysis 
shows ax/X- IS. Thus, the integrand in Eq. (24) needs to be evaluated only at c = a. 
The third term in Eq. (24) is then integrated by parts which gives 

The second term in Eq. (22) is a sum of three parts, II = II . 1 + II . 2 + II . 3; eg.. 
II . 3 = a(e @/a[)/@. These three terms are analysed as above. 

The result gives the integral equation for x: 

B. Fourier Expansion Method 

Since both the coefficients of the equation and the solution 
respect to 4 and [, they possess Fourier expansions, e.g., 

are periodic with 

=fo,o+fo,~cos5+f0,2sin5+~~~~S0,,Msi~m~ 

+(fi,o+fi,lcos~+fi,2Sin5+ s.. +f,,,sin~C)cos4 

+(f2,0+f2,1co~5+~~~+f2,,,~~in~i)~inQ 

+ - a - -t dr’,,, + xv, 1 cos C + . . . + A%,,, sin ml;) sin n#. (27j 

In this expression, the series is truncated at m, n and we define M = 2m, N= in, 
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There are (N + l)(M + 1) harmonics for each r~. The harmonics fk,[ are functions of 
o. The HELIAC configuration has mh helical periods. In this case, 4 in Eq. (27) is 
replaced by mh#. If f is a known function, Fourier transforming yields the fk,, . The 
method presented here shows how to compute the harmonics xk,[ for the unknown x. 

For fixed o, two doubly periodic functions a and x can be identified with a and f, 
the vectors whose components are the harmonics ak,, and xk,/, respectively. The 
product of two such functions can be represented in matrix vector form: A ,?, where A 
is a square matrix of order (N+ l)(M+ 1). The elements of A consist of the 
components of 5. If a is known while x is unknown, the harmonics of x are 
algebraically isolated, e.g., if 

~7 = (a,, a,, a2) = a, + a, cos x + a, sin x, 

7= olo~xl~xz)= Xo+xlcosx+X,sinx, 

AX= [i +ff: ?] [p]. 

The truncation error is: f(a,xl - a& cos 2x + j(a,x2 + a,,yl) sin 2x. The 
appendix presents the algorithm that generates A for arbitrary n and m. 

The harmonics of f(#, 5) are stored in vector form, 

J;= dfo,o~fo,~~...~fo,ni~fi,o~.~~~f~,.~~ (2W 

where dim(T) = (N + l)(M + 1). Differentiation with respect to 4 or [ is expressed in 
matrix vector form with infinite accuracy (for the representation chosen for 7): 

af - 
q = m&f and 

Here mh is the number of helical periods per toroidal transit. The matrices P,, P, are 
of order (N + l)(M + 1). In block form, 

P,= 

0 0 
0 0 I, 

--I, 0 0 
0 0 21m 

-21, 0 0 
0 * 

(28) 
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and 4, is the identity matrix of order M + 1. The matrix P, = diag(p,) where 

I 

0 0 
0 0 1 

-1 0 0 

Pr = 

0 0 2 
-2 * 

and order (ps> = h4 t 1. 

C. Discretization of Equations 

The equations to solve are Eq. (15) for do < CJ < 1, Eq. (17) for (T = 1, and 
Eq. (26) where x at r~ = 0 is given by Eqs. (19) and (20). Divide the intervai 
0 < u < 1 into L subintervals 0 = o0 < o1 < a.. ( a, = 1. Differentiations with respect 
to o are approximated by finite differences. At u = oj, let xj denote the vector of 
harmonics corresponding to the unknown function ~(a~), and let Aj, Bj,... respectively 
denote the matrices resulting by properly combining the harmonics of the vectors 
Lij, ~j,... corresponding to the coefficients a, b,... (see Appendix A). Divide Eq. (15) by 
ag([)*R and discretize at (T = oj, j = 1, 2 ,..., L: 

i 

2 
-__ 
,“j+l - Oj-1 

Aj+ 1/2kj+ 1 - xj)/(oj,, - aj) 

+ (“tzBj+ 1/2Pm + Cj+ 1/2Pc) Xi+ 112 - .*a 

+ ‘nhPqnBjCXj+ 1 -Xj-I)/(oj+,-oj-*)+m,DjP,Xj+...+PI[..’]=O. 

Note that the matrices P,, P, multiply the coefficient matrices either on the left or 
right, corresponding to differentiated terms such as a(bX)/a@ or baX/@, respectively. 
In Eq. (3Oh xj+l:2 = (xj+ 1 + xj)/2. Equation (30) is rearranged in the form 

QjXj- 1-t SjXj + Tjxj+ 1~ 0, j = 1, 2,..., L? (31) 

which is a biock tri-diagonal system of equations. In Eq. (3 1 j, 

Qjj" (,&) Aj-1/2-Gj-Cj-l/2P(: (32a) 

Sj A 2Aaj [P,FjPs f m,(P,EjP, + EjP[P,) + mi DjP,P,] 

+ Ccj+ l/2 - cj- l/2 )P~-2(Aj+l/2/A~j+~;.~tAj-l,~lA~j-li~>~ (32bj 

Tj & 2 

( 1 _ 4+1/I 
,Auj+ 112 

+ 'j + cj+ 1/2p< 
(32C) 
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where P,, P, are given in Eqs. (28), (29) above, 

Gj=P,Cj + m,(P,Bj + BjP,) and 

Auj+ ,iz = aj+ 1 - oj, Aaj = (aj+, - oj- ,)/2. 
(32d) 

Equation (17) is similarly discretized at (3 = o, = 1: 

where 

% = PMmh4,J’, + Cl., PJ (34) 

and A l,L, B,,, C,,, are the matrices which respectively correspond to the coefficients 
a,, b, and c, in Eq. (17). The vector of harmonics b, in Eq. (33) contains the 
harmonics of 6,. Equations (33) and (31) (for j = 1) are combined in order to 
eliminate xr. + , . This gives 

L%.,TIQ, +A,,Jx~--I + [A,,J?S, -D,.,lxr= Ch’4~~. (35) 
A similar procedure is performed at 0 = 0. Equation (26) is discretized and 

combined with Eq. (3 1) (for j = 1). The procedure is altered due to the specification 
of xar at (T = 0 (Eqs. (19) and (20)). As discussed above, this specification is made to 
remove the non-uniqueness of the solution of the Neumann problem. The procedure is 
simplified if a Dirichlet problem needs to be solved, since xav then cannot be given a 
priori. Discretizing Eq. (26) gives 

where 

0 = -2n 
! dC[(A,., + 4,.,)x1 + (-40 + &I) x01 (36) 
0 

4.0 = P/As) A l/z + Cm,/21 p,Blj23 (3 74 

and 

B~.~ = - [pSc1,21 + mh B,l,P,-$-Pb[PcF,i2] +m* ) h (9) P,D,,,P,- (37b) 

In the above equations, A L,z, B ,/z ,... correspond to the matrices generated by the 
harmonics of the coefficients a, b,... in Eq. (15) evaluated at (5 = Aa/2. The two terms 
enclosed by square brackets in Eq. (37b) denote the matrices corresponding to the 
enclosed vectors; the vectors cl,*, e1,2 correspond to the coefficients c and e. Finally 
x1 and x0 represent the vector of harmonics of x at u = do and 0 respectively. 

In Eq. (36), the integral is a vector of harmonics. If the harmonics in xj are ordered 
as in Eq. (27), and stored as in Eq. (27a), then for 

i=j(fw+ 1)+ 1, j = 0, 1 ,..., N, (38) 
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the fi harmonics correspond to terms independent of 5. At c = 0, ail other harmonics 
vanish to assure single-valuedness. If only these fi harmonics of the integrand are 
considered, the integration is trivial. Let H, denote the square submatrix of order 
N+ 1 consisting of only the elements of B,,, -A,,, that belong to both rows i and 
columns i, for i defined in Eq. (38). Let K, denote the (N + 1) X (N + 1 )(M + 1) 
submatrix consisting of only rows i of A,,, + B,,,. Equation (36j becomes 

Hoxo +&xl = 0 (39) 

where the sub-vector x,, has dim(x,) = N + 1 and contains only the i harmonics of x0 I 
If one is interested in solving the Dirichlet problem, Eq. (39) may be combined 

with Eq. (3 1) (for j = 1) thereby eliminating x0, giving 

(S, - f&H,‘K,)x, + T,xr = 0 

where 0, is a rectangular matrix of dimension (N + l)(M + 1) X (P? + 1) consisting 
of the i columns of Q, for i defined in Eq. (38). However, for the Neumann problem: 
Eq. (20) must also be considered. Our procedure, to be justified in Appendix Br 
replaces the first row of Eq. (39) with the discretization of Eq. (20). The entire first 
row of K, is set to zero. In addition, the entire first row of H, is also set to zero 
except for the (1, 1) element which is set to one. 

Combining Eqs. (40), (35), and (3 1) for j = 2, 3...., L - 1 gives a block-tridiagonal 
system of equations for the unknowns xj, j = 1, 2,..., L. This system may be solved by 
standard banded or block-tridiagonal solvers. In our applications we use BTMS [ 12]. 
a version of standard block-tridiagonal gauss reduction which needs approximately 
l/3 of the storage that the entire matrix would require. Later applications requiring 
more harmonics to represent the boundary use DSBTMS [ 13). This is a disc version 
of the above routine with a storage requirement equivalent to one block row of the 
matrix. 

5. COMPUT.4TIONAL RESULTS 

In this section, we present two applications that illustrate the generality of the 
method. Both cases model proposed or existing expeiments. The relevant parameters 
for the cases presented are given in Table I. A wide parameter study is published 
elsewhere [ 141. 

Once the harmonics are computed, they are given to a field line tracing code. 
TUBE [ 151, which integrates the system of ordinary differential equations, 

dr/dl= B,,!B, dzldl= BJB, d$ldl = B m /r-B (41j 

where Bi is the i-th component of g (‘VW) (cylindrical coordinates) and B = ji?l~ 
The independent variable is 1, the length along a field line. The three dependent 
variables (P, 4, z) are the cylindrical coordinates of the field line. This integration 
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TABLE I 

Relevant Parameters for Computational Results 

Case 1 2 

RO 9 9 

P 1.2 0 

@d) 24 - (l/4) sin 24 v 
idi) (1, -.073, -2165, .1193) (1, 0, 0, .1&O, 0, .02) 

Note. Definitions of variables are given in the text preceding Eq. (12) and in Fig. 5. For g(i), only 
the cos kc harmonics k = 0, l,... arc listed. Thus, for Case 1, g(T) = 1 - ,073 cos < - .3 165 cos 2i + 
.I 193 cos 31. 

PHI = 0 

FIG. 6. Field line tracing plot of HELIAC model. Boundary of D is the bean-like contour adjoining 
the symbols A. 
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requires computing the three components of 0~. Each intersection of the field line 
with a symmetry plane is recorded and plotted in Figs. 6 and 7. Magnetic surfaces 
are traced by joining all positions of the same letter. On each surface the average 
value of l/B and the transform are also computed. 

Case 1, a HELIAC, has the bean-like cross-section outlined in Fig. 6. The aspect 
ratio is -9. The helical twist is at least as important as the toroidal curvature. The 
choice for 19($) made in Table I imposes two helical periods per toroidal transit. It 
also has the effect that the cross-section spends more time outside the circle of radius 
R, than inside. This modulation of f?(4) is found to produce configurations with 
deeper magnetic wells [ 141. Figure 8 is a three-dimensional plot of one helical period. 
The grid lines on the surface correspond to constant Q and 5 angles. The rings are 
equipotential contours and coincide with the direction of the skin currents that 
generate the field. Note that the currents are tilted in the direction of the pitch of the 
helix. A closer inspection (not evident from the figure} shows that the current loons 

FIG. 7. Field line tracing plot of stellarator model. Boundary of D is the triangular contour 
adjoining the symbols A. 



486 SHESTAKOV AND MIRIN 

FIG. 8. 3-Dimensional plot of boundary of HELIAC showing one field period. Grid on the surface 
shows constant $ and constant 5 lines. The rings show direction of skin currents. Outlined circular axis 
and major axis are for reference only. (Courtesy of N. J. O’Neill, MFECC LLNL.) 

are not planar. This configuration has a slight magnetic well (-1.3%) and moderate 
shear. Results are displayed in Fig. 9. 

Case 2 demonstrates the applicability of this method to standard stellarators. We 
use parameters approximating CLEO [ 161. In this case p, the winding radius, is zero. 
Although e(4) = 24, the three-fold symmetry of g(5) and choice for p (=0) gives six 
helical periods per toroidal transit. Figure 7 is a field line tracing plot of this 
configuration. Figure 10 displays the average field strength and the transform. The 
configuration has a magnetic hill and little shear. Note that the magnetic axis, which 
at # = 0, Z = 0, is at R = 8.75, is distinct from the axis of the (0, 4, [) coordinate 
system which lies at R = 9. 

The above cases were run on the CRAY-1S computer at the National MFE 
Computer Center at Livermore. This machine has approximately 1.2 million decimal 
words available for the user. Approximately 80% of the time is spent in computing 
the matrix coefficients; the remaining time is used by the Gaussian elimination matrix 
solver. The run time to compute v is approximately 0.0093L(MN)‘.6 seconds where 
L, M, N respectively denote, the maximum number of o mesh points, and the highest 
[ and 4 harmonics carried. Typical values are L = 40, M = 12, N= 3. In addition, 
approximately 60-90 seconds is required for the field line integrator TUBE [IS] to 
examine the field. 

1, / I 

10.2 10.4 10.6 10.8 

(-1.46 

-1.62 

FIG. 9. HELIAC Model. Average inverse field strength, i dl/B, and transform, f vs. R, the distance 
from the major axis at ( = 0, Z = 0. Location of the boundary and magnetic axis is shown. 
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1620 I I I I I I I I -I.? 
1600 - 

- -1.8 

Jdp E t - 15*O_L/7- 1560 

1540 - -1.9 

1520 

1500 
Msg. axis SD -2.0 

8.8 9.0 9.2 9.4 9.6 9.8 10.0 10.2 

R 

FIG. 10. Stellarator Model. Average inverse field strength, j(df/B), and transform i, vs R, dist. from 
the major axis at lp = 0, Z = 0. Location of the boundary and magnetic axis is shown. 

6. EXTENSIONS, LIMITATIONS, DISWSSION AND CON~IJJSIONS 

The computer program has been modified for the cases of interest in HELIAC 
research. Since the cross-sections are expected to have up-down symmetry (in the 
$ = 0 plane), they are defined using only cosine harmonics, e.g., 

g(C) = 1 g, cm kc. 
k 

Furthermore, the winding law is 0($) = k@ or possibly 8($) = k$ + E sin k@ (k 
integer). The resulting w has a symmetry which requires computation and storage of 
only half of the harmonics. Taking advantage of this allows the use of more 
complicated cross-sections, o-mesh points, etc. 

In the present application, the limitations of the method stem from its demands for 
large computer memory. If a typical g(c) is to carry m/2 harmonics, (cosine and sine 
included), the solution needs -m harmonics (possibly more, if the harmonics of g do 
not decay rapidly), If M = 2m, then (M + 1) harmonics of [ are required. Similarly, if 
v carries up to n #-terms, and N = 2n, N + 1 toroidal terms need to be computed. 
The sub-matrices appearing in Eq. (3 1) are of order (N + I )(&f + 1 j. The entire block 
tridiaginal matrix will contain -3L(N + 1)2(M + 1)’ elements where L is the number 
of block rows. The DSBTMS solver [ 13 ] is very useful since it reduces the storage 
requirement by a factor of L. Furthermore, taking advantage of the aforementioned 
symmetry, the requirement is reduced by another factor of four. The significant 
storage limitation stems from the algorithm which computes the matrix coefficients. 
At present 9 blocks of (N+ l)‘(M+ 1)’ elements are required. 

Computer time is not a significant factor. Hundreds of configurations can be tested 
using modest amounts of time. This approach is superior to the standard method of 
coil design using the Biot-Savart law. Running times using the Biot-Savart Law 
increase rapidly with both the number and complexity of the coils. It is not 
uncommon to spend 5-10 minutes of equivalent CRAY time to compute just one flux 
surface. 

.4 few words should be said regarding the choice of coordinates. The development 
of the method grew out of a desire to compute the vacuum field inside an asym- 
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metrical torus. A cylindrical coordinate system was inappropriate since the domain of 
definition in those coordinates is nontrivial. We were thus led to a (r, @, <) system 
whose axis lies inside the domain. Introduction of the scaled distance (T (ET/g([)) 
facilitated an accurate discretization of the boundary condition. After deriving 
Eq. (15), one could use a finite difference approximation to all of the derivatives. 
This, however, leads to a very large sparse matrix with few available routines to 
invert it. On the other hand, the (a, 4, 5) system has the advantage that the solution is 
doubly periodic in these coordinates. Thus, one is irresistibly drawn to a Fourier 
representation of the functions. The double Fourier expansion has the added 
attraction that the resulting system is of block tridiagonal form with full blocks. For 
such systems there are readily available routines [ 12, 131. 

Some skeptics point out that a Fourier representation is useful and economical, 
only when one predetermines an optimal angular variable. We concur to a degree. In 
the applications presented here, we rarely used more than three toroidal harmonics 
(n = 3). This gives evidence that 4 is a good toroidal variable. However, on occasion, 
as many 20 poloidal harmonics (m = 20) were needed. Apparently, 5 is not a good 
poloidal variable [ 171. One can experiment with other variables, e.g., u = [ + F(C) 
where I; is periodic in 4’. It is straightforward, but tedious to incorporate the new 
definition into the equations. The Fourier method, however, can be applied as before. 

Lastly, the numerical method can be used in other physical applications. In 
particular, it can solve any elliptic problem when the solution and the coefficients 
have any number of periodic independent variables. Non-linear problems would, of 
course, require iteration. The coordinate system used is not essential to the 
applicability of the method. One may consider the method described as solving an 
elliptic equation with variable coefficients, Eq. (31), in a periodic cylinder, Eq. (14). 
The method can also be applied to implicit time differencing of parabolic problems. It 
is particularly attractive if the coefficients are time independent, for then, the time- 
consuming part of the calculation needs to be done only once. 

APPENDIX A 

In this section, we present the generation of the matrix A from the vector of 
harmonics a. If two functions u and a have 1 -D Fourier series representations, 

N 

and 

u(v) = C uk cos kv + vk sin kv 
k=O 

N 

(A-la) 

a(v) = c uk cos kv + b, sin kv, 
k=O 

(A-lb) 

then the product au has a series representation whose leading terms are 
N 

(au)(v) = 2 ck cos kv + d, sin kv, (A-2) 
k=O 
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where 

For n > I, let ,vl = min(n - 1, N- n}. Then 

2cn= if: (a,-j+a,+j)uj+ (b,+j-b,-j)Uj+z 
j=O 

and 

2dn = 2 (b,-j + b,+j) uj + (an-j -a,+j) uj + M’. 
j=O 

(A-3) 

(A-da) 

(A-43) 

The trailing terms z, w depend on one of the following: If N - n < n, 

n-1 N 

Z= 2 (a,-juj-b n-l~j) + ~u,u,, + C (aj-,uj + bj-,Uj), (A-5a) 
j=iV-n+l j=n+l 

and 

n-1 A’ 
W= C 

j=iV-nil 

(b,-juj + an-jvj) + 2ao~, + C (-bj-,Uj + aj-nuj). (A-Sj 
j=n+l 

If N - n = n, 

Z= (2’0 + aN)u, + bNV, + 5 (aj-nUj + bj-,vj), (A-b) 
j=n+ I 

and 

l+~=bNu,, + (2a,-a,) V, + f’ (-bj_,Uj+ aj-,~~j). (A-t%) 
j=n+l 

If N - n > n, 

N--n 

Z=(2’0+adun+b~vn+ C [(aj,, +aj-,)uj 
j=ntl 

+ (bj+n + bj-n)uj] + 5 (aj-nuj + bj-,Vj)v (A-‘la) 
.i=A-ni 1 
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and 

N--n 

~=bznun + (~~,-cz,,)zJ, + C [(b,+j-bj-,l)Uj 
j=n+l 

+ (aj-,-aj+,)vj] + 5 (-bj-.Uj+aj-.uj)* 
j=N-ntl 

(A-7b) 

In two- (and higher) dimensions, the above algorithm is reapplied. Suppose a and u 
have 2 -D expansions in two variables p, v as in Eq. (27). In Eq. (A-l) above, 
assume that uk, vk, ak, b, are functions of pu, each with its own series expansion (in 
p). The expressions in Eqs. (A-3) to (A-7) now correspond to series multiplications. 
For example, in Eq. (A-4a) the vector of harmonics multiplying the vector U,(D) is 
@n-,01) +%,I @)). One repeats the above procedure to compute the c,,, subblock. 

Generalization to n > 2 dimensions is straightforward. 

APPENDIX B 

We now justify the apparently arbitrary modification of the first row of the matrix 
as described in Section 4C. 

Let MX = 4’ denote the linear system consisting of Eqs. (39), (3 1) and (33), and let 
m denote the order of M. Since the Neumann problem is unique up to a constant, M 
has rank m - 1. The augmented system obtained by adding the discretization of 
Eq. (20), is of rank m. Thus, to justify our elimination of the first row of Eq. (39), we 
must show that the first row of M is linearly dependent on the other rows. It is 
proven below that the addition of the number “one” to the (1, 1) element of M results 
in a nonsingular matrix. Hence rows 2 through m are linearly independent, so that the 
first row does indeed depend linearly on the others. The proof that adding one to the 
(1, 1) element of M results in a nonsingular matrix follows. 

Consider the following elliptic problem for u in a toroidal domain D: 

V2u=f in D, (B-la) 

au/an = g on cYD. (B-lb) 

Using the identity 

it follows that the functions f and g must satisfy an integral equation in order for u 

to exist. Analogously, the Neum,ann problem for x has a solution because of the 
discussion following Eq. (11). 
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Using the Fourier expansion method, Eqs. (B-l) are transformed into a linear 
system 

In Eq. (B-3), we include all the unknown values of x. Using the representation of 
Section 4B, 

where dim@,) = N + 1; and for i = l,..., L + 1, dimbJ = (M + l)(N t 1). 
Define m = dim@). The sub-vector x0 contains the unknown harmonics at 5 = 0. 

The sub-vectors fi (i = l,..., L) contain the harmonics at CJ = oi where err. = 1; while 
xL + 1 contains the harmonics at the “image tube” CJ = 1 + do,. Analogously, 

The matrix fi is nearly block tridiagonal. Its first block now consists of Eq. (39). 
The next L block rows consist of the appropriate matrices in Eq. (3 1). For j = 1) (2, 
is transformed as per the discussion following Eq. (40). The last block row is 
Eq. (33), and breaks the block tridiagonal structure. 

The matrix ii? is the discretization of the differential operators in Eqs. (B. 1). The 
solution to this is unique only up to an additive constant. Hence, M is singular and 
for arbitrary jr, Eq, (B-3) has either 

(1) an infinite number of solutions, or 

(2) no solutions. 

Using the vector format of Eq. (B-4), consider the m-dimensional vector t’ 
consisting of subvectors L’~ which have all zero elements except for a unit first 
element. This vector is the analogue of a constant function (=1) in the Fourier 
harmonic representation. The constant function satisfies Laplace’s equation with 
homogeneous boundary conditions. Since ji? is a consistent discretization of the 
Neumann problem, 

Case (1) above is thus explained; if for some f, 2 solves Eq. (B-3), then j + aL is 
another solution where u is an arbitrary constant. In algebraic terms, ii spans the null 

space of the operator fi. The second case arises if the ~7 vector, which is the Fourier 
representation of the functions f and g in Eq. (B-l ), does not satisfy the 
discretization of Eq. (B-2). 

Define a square matrix N with order (N) = order (M). Using the matrix format for 
M, let N consist of all zeros except for “ 1” in the (1, 1) element of the last diagonal 
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block. For an arbitrary vector f, Nf is a vector with at most one non-zero element. 
Recalling Eq. (27), at o = 1 + do,, 

(B-7) 

where the prime signifies that the average value (k = 0 = Z) is excluded from the sum. 
The requirement that 

Xo,o(%+J=YLtl (B-S) 

can be expressed in matrix-vector form 

Nf= l/r+,% (B-9) 

where 19 is an m-dimensional vector with only one non-zero element. 
The solution to the Neumann problem, Eq. (B-3) (for an appropriately chosen 7) 

can be made unique by incorporating Eq. (B-9). Define a new matrix (operator) 

M’=M+N. 

Any vector X satisfying Eqs. (B-3) and (B-9) satisfies 

M’f=~+xLt,t3. (B- 10) 

We now show that the operator M’ is invertable by proving that if P # 0 then 
M’U# 0. This proves that the modified problem, Eq. (B-lo), can be solved. Consider 
any such U; which we subdivide as in Eq. (B-4). Let U( be the first element of the sub- 
vector U;. + , . Define the vector 

s= ii- U,U; (B-11) 

a vector which has at least one zero element. Then 

M’E = (M + N)($+ u/z?) 

= MS+ u,MU+ NS+ u,NU. (B-12) 

The second term vanishes because of Eq. (B-6); the third because S is chosen to have 
zero in the crucial element. The last element vanishes only if u1 = 0; the first term 
vanishes only if S is a multiple of z?- mutually exclusive possibilities. Since by 
assumption U= 0, our proof that Eq. (B-12) is non-zero is complete if we can show 

MC# --u,Nu: (B-13) 

We prove this by contradiction. Since ur # 0, the r.h.s. of Eq. (B-13) is zero except 
for one element. An equality in Eq. (B-13) corresponds to the discretization of Eqs. 
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(B-l) with f - Cl and g E U[ = const since MS corresponds to a consistent 
discretization of Eqs. (B-l). This is impossible since the compatibility condition 
would then be violated, i.e., 

J gda=u, 
s 

da = uj Area(irD) f 0. 
C3D BD 

This completes the proof that if u # 0, M’u f 0. Hence, M’ can be inverted. 
The above proof can be repeated when the average value of x is prescribed at 

another cr = value. Beginning with Eq. (B-7), using similar arguments, one needs to 
reprove Eq. (B-13) where the location of the lone non-zero element of N is different. 
In this case the corresponding boundary function g vanishes while the function f (see 
Eq. (B-la)) is zero except at some internal value of 0. It is easy to show that for this 
f and g Eq. (B-2) cannot hold. Thus, no vector S can render equality in Eq. (B-13). 
This proves that the modified M’ always has an inverse when one is added to the 
(1, 1) elements of any its diagonal blocks. Consequently, as discussed in the 
beginning of this appendix, it is allowable to perform the row replacement as in 
Section 4C. 

ACKNOWLEDGMENTS 

The authors wish to thank Dr. Harold Furth of the Princeton Plasma Physics L.aboratory for 
suggesting the problem to them and for his continued support and encouragement. They also thank 
Dr. 0. Betancourt of New York University and Dr. W. Dommaschk of Max-Planck-Institut fur 
Plasmaphysik for graciously providing valuable reprints of their work. The authors profited from fruitful 
discussions with Drs. S. Yoshikawa and T. K. Chu of Princeton. Their interest in this project gave much 
stimulus. The field line solver which calculated the magnetic surfaces was an important part of 
evaluating the resulting solution. Many thanks go out to Mr. N. O’Neill for making the many necessary 
modifications to the existing code TUBE. The original paper was improved after incorporating the 
suggestions of the referees. 

REFERENCES 

1. Ph-~sics Today (August 1980), 17. 
2. A. H. BOOZER et al., in “Plasma Physics and Controlled Nuclear Fusion Research 1982, Ninth 

Conference Proceedings, Baltimore, USA, September 1-8, 1982.” Nuclear Fusion, Supplement 
1983, 11 l-129. 

3. S. YOSHIKAWA, Princeton Plasma Physics Laboratory, private communication, 1981. 
4. .I. M. GREENE .&ND J. L. JOHNSON, in “Advances in Theoretical Physics” (K. A. Brueckner. Ed.). 

Vol. 1, Academic Press, New York, 1965. 
5. A. B. EHRHARDT, Bull. Amer. P&s. Sot. 28, No. 8; Proceedings, 25th Annual Meeting of the 

Division of Plasma Physics in Los Angeles, CA; Nov. 7-11, 1983, paper lF4. 
6. J. D. JACKSON, “Classical Electrodynamics,” Wiley, 2nd ed., New York, 1975. 
7. L. P. MAI, G. GIBSON, AND T. K. CHU, in “Proceedings’ Fourth U. S. Stellarator Workshop, Oak 

Ridge National Laboratory, Oak Ridge, TN, April 14-15, 1983,” CONF-830428. 



494 SHESTAKOV AND MIRIN 

8. W. DOMMASCHK, Z. Naturforsch A 36 (1981), 251-260. 
9. W. DOMMASCHK AND .I. NUHRENBERG, Max Planck Institute fur Plasmaphysik, private 

communication, 1983. 
10. 0. L. BETANCOURT, “Three Dimensional Computation of Magnetohydrodynamic Equilibrium of 

Toroidal Plasma without Axial Symmetry,” Courant Institute of Mathematical Sciences, New York 
University, AEC Research and Development Report, COO-3077-49, MF-67, June 1974. 

11. P. R. GARABEDIAN, “Partial Differential Equations,” Wiley, New York, 1964. 
12. A. C. HINDMARSH, “Solution of Block-Tridiagonal Systems of Linear Algebraic Equations,” 

Lawrence Livermore National Laboratory, UCID-30150, February 1977. 
13. A. GREENBAUM, Lawrence Livermore National Laboratory, private communication, 1983. 
14. A. I. SHESTAKOV, A. A. MIRIN, AND N. O’NEILL, in, “Proceedings, Fourth U.S. Stellarator 

Workshop, Oak Ridge National Laboratory, Oak Ridge Tenn., April 14-15, 1983.” 
15. N. O’NEILL AND A. MIRIN, TUBE-a Field Line Integrator Code, LIBRIS abstract P81, Magnetic 

Fusion Energy Computer Center, Lawrence Livermore National Laboratory, Livermore, CA. 
16. H. RENNER, D. J. LEES, AND T. K. CHU, IEEE Trans. Plasma Sci. PS-9, No. 4, (1981). 
17. J. N~~HRENBERG AND U. SCHWENN, Max-Planck-Institute-fur-Plasmaphysik, private 

communication, 1983. 


